Skip to main content

Types and working of Power Steering

There are 2 types of power steering currently in use. These are integral and linkage booster types. Both are operated by hydraulic pressure produced by an engine driven pump to assist in turning the steering mechanism. The integral power steering is explained below :


Integral Power Steering : figure shows the integral power steering when the vehicle moves in the straight head position. the oil pump is belt driven from the engine crankshaft pulley. It consists of a solid cylinder with 2 grooves cut called valve spool which slides within the valve housing. The housing has three internal grooves is connected to the pump and the other are connected to the reservoir.
 


The two additional opening are connected to the two sides of the cylinder fitted with piston. When the valve spool is in the position as shown is figure , the pump delivers the oil in the central part of the housing which flows back to the reservoir by the passage shown by the arrows. In this position, there is no oil pressure in the cylinder and there is no tendency for the position to slide in any direction. There is no steering action and the vehicle moves in the straight-head position.


Figure 2nd shows that when the valve spool is moved towards right side, the direct return supply from the pump to the reservoir is closed. The oil flows into the cylinder by the right side passage and pushes the piston to the left side as shown in the figure. The oil on the left side of the piston flows back to the reservoir through the valve housing under this position. The left side outward movement of the piston rod turns towards left side of the road, the vehicle can be turned to the right side by reversing the steering operation.

Comments

Popular posts from this blog

Common Rail Type Fuel Injection System

  Electronic control common rail type fuel injection system drives an integrated fuel pump at an ultrahigh pressure to distribute fuel to each injector per cylinder through a common rail.   This enables optimum combustion to generate big horsepower, and reduce PM* (diesel plume) and fuel consumption. Bosch will supply the complete common-rail injection system for the high-performance 12-cylinder engine introduced by Peugeot Sport for its latest racing car. The system comprises high-pressure pumps, a fuel rail shared by all cylinders (i.e. a common rail), piezo in-line injectors, and the central control unit which compiles and processes all relevant sensor data.

Turbocharger

  A turbocharger is actually a type of supercharger. Originally, the turbocharger was called a "turbo super charger." Obviously, the name was shortened out of convenience. A turbocharger’s purpose is to compress the oxygen entering a car’s engine, increasing the amount of oxygen that enters and thereby increasing the power output. Unlike the belt-driven supercharger that is normally thought of when one hears the word "supercharger," the turbocharger is powered by the car’s own exhaust gases. In other words, a turbocharger takes a by-product of the engine that would otherwise be useless, and uses it to increase the car’s horsepower. Cars without a turbocharger or supercharger are called normally aspirated . Normally aspirated cars draw air into the engine through an air filter; the air then passes through a meter, which monitors and regulates the amount of air that enters the system. The air is then delivered to the engine’s comb

Different types of Casting Process

1) Investment casting 2) Permanent mold casting 3) Centrifugal casting 4) Continuous casting 5) Sand casting Investment casting Investment casting (known as lost-wax casting in art) is a process that has been practiced for thousands of years, with lost wax process being one of the oldest known metal forming techniques. From 5000 years ago, when bees wax formed the pattern, to today’s high technology waxes, refractory materials and specialist alloys, the castings ensure high quality components are produced with the key benefits of accuracy, repeatability, versatility and integrity. Investment casting derives its name from the fact that the pattern is invested, or surrounded, with a refractory material. The wax patterns require extreme care for they are not strong enough to withstand forces encountered during the mold making. One advantage of investment casting it that the wax can be reused. The process is suitable for repeatable