Skip to main content

Why Manual Transmission Cars Make a Loud Whirring Noise in Reverse?

Manual transmissions use mostly helical gears, but reverse is a special situation that requires a different type of gear - a spur gear.

The gears that make up the forward gear ratios are all helical gears. The teeth on helical gears are cut at an angle to the face of the gear. When two teeth on a helical gear system engage, the contact starts at one end of the tooth and gradually spreads as the gears rotate, until the two teeth are in full engagement. This gradual engagement makes helical gears operate much more smoothly and quietly than spur gears. Also, because of the angle of the gear teeth, more teeth are in engagement at any one time. This spreads the load out more and reduces stresses.




The only problem with helical gears is that it is hard to slide them in and out of engagement with each other. On a manual transmission the forward gears stay engaged with each other at all times, and collars that are controlled by the shift stick lock different gears to the output shaft (see How Manual Transmissions Work for details). The reverse gear on your manual transmission uses an idler gear (the large spur gear visible at the right side of the picture below), which has to slide into mesh with two other spur gears at the same time in order to reverse the direction of rotation.

Spur gears, which have straight teeth, slide into engagement much more easily than helical gears, so the three gears used for reverse are spur gears>
Each time a gear tooth engages on a spur gear, the teeth collide instead of gently sliding into contact as they do on helical gears. This impact makes a lot of noise and also increases the stresses on the gear teeth. When you hear a loud, whirring noise from your car in reverse, what you are hearing is the sound of the spur gear teeth clacking against one another!

Comments

  1. Copper Freer offers reliable and professional air compressor service. We provide our services in Leicester, Peterborough, Corby, Northampton, Nottingham, Derby, UK, Milton Keynes, Kettering, Coventry, and Lincoln. We offer regular services to yearly maintenance.

    ReplyDelete

Post a Comment

Popular posts from this blog

Common Rail Type Fuel Injection System

  Electronic control common rail type fuel injection system drives an integrated fuel pump at an ultrahigh pressure to distribute fuel to each injector per cylinder through a common rail.   This enables optimum combustion to generate big horsepower, and reduce PM* (diesel plume) and fuel consumption. Bosch will supply the complete common-rail injection system for the high-performance 12-cylinder engine introduced by Peugeot Sport for its latest racing car. The system comprises high-pressure pumps, a fuel rail shared by all cylinders (i.e. a common rail), piezo in-line injectors, and the central control unit which compiles and processes all relevant sensor data.

Turbocharger

  A turbocharger is actually a type of supercharger. Originally, the turbocharger was called a "turbo super charger." Obviously, the name was shortened out of convenience. A turbocharger’s purpose is to compress the oxygen entering a car’s engine, increasing the amount of oxygen that enters and thereby increasing the power output. Unlike the belt-driven supercharger that is normally thought of when one hears the word "supercharger," the turbocharger is powered by the car’s own exhaust gases. In other words, a turbocharger takes a by-product of the engine that would otherwise be useless, and uses it to increase the car’s horsepower. Cars without a turbocharger or supercharger are called normally aspirated . Normally aspirated cars draw air into the engine through an air filter; the air then passes through a meter, which monitors and regulates the amount of air that enters the system. The air is then delivered to the engine’s comb

Different types of Casting Process

1) Investment casting 2) Permanent mold casting 3) Centrifugal casting 4) Continuous casting 5) Sand casting Investment casting Investment casting (known as lost-wax casting in art) is a process that has been practiced for thousands of years, with lost wax process being one of the oldest known metal forming techniques. From 5000 years ago, when bees wax formed the pattern, to today’s high technology waxes, refractory materials and specialist alloys, the castings ensure high quality components are produced with the key benefits of accuracy, repeatability, versatility and integrity. Investment casting derives its name from the fact that the pattern is invested, or surrounded, with a refractory material. The wax patterns require extreme care for they are not strong enough to withstand forces encountered during the mold making. One advantage of investment casting it that the wax can be reused. The process is suitable for repeatable