Skip to main content

Mechatronics

Mechatronics is a word originated in Japan in 1980s to denote the combination of technologies which go together to produce industrial robots.
A formal definition of Mechatronics is “the synergistic integration of Mechanics and Mechanical Engineering, Electronics, Computer technology, and IT to produce or enhance products and systems.’’
The various fields that make up Mechatronics is shown in Fig

01-what is Mechatronics-Introduction-Mechanical and Eletronics
Examples of such systems are
  • Computers,
  • Disk drives,
  • Photocopiers,
  • Fax machines,
  • VCR,
  • Washing machines,
  • CNC machine tools,
  • Robots, etc.
Today’s modern cars are also mechatronics product with the usage of electronic engine management system, collision detection, global positioning system, and others..
01-mechatronics-design-combination of mechanical and electronics
The concept of mechatronics is very important today to meet the customers’ ever increasing demands and still remain competitive in the global market. Very often a mechanical engineer without the mechatronics background is considered equivalent to a mechanical engineer without the engineering drawing knowledge.
Mechatronics requires thinking products and processes so transverse. Mechatronics is "burst the walls, with a steering matrix. The pilot at the highest level of the enterprise is essential in this context, to afford in front needs to be implemented.
The design should no longer be sequentially: the mechatronics approach requires thinking about the product as a whole (all skill areas at a time) and not by separating the mechanical part, then electronics, then the sensor – actuators and computers at risk to achieve additional cost prohibitive.
01-robot-arm-future-mechatronics
The project manager must master the various areas and not be an expert in one of mechatronics technology: It was necessary to avoid watching the draft with an eye mechanics or electronics. The pilot is here, as elsewhere, the role of a conductor, not a virtuoso.
The phases of integration are sensitive, such that an electronic assembly in a machine shop (or vice versa). There are telescoping and areas of project management and competence, which involves work that is done jointly, to ultimately obtain not a purely mechanical or purely electronic, but a set that combines the advantages of 2, which can not be separated.

Comments

Popular posts from this blog

Common Rail Type Fuel Injection System

  Electronic control common rail type fuel injection system drives an integrated fuel pump at an ultrahigh pressure to distribute fuel to each injector per cylinder through a common rail.   This enables optimum combustion to generate big horsepower, and reduce PM* (diesel plume) and fuel consumption. Bosch will supply the complete common-rail injection system for the high-performance 12-cylinder engine introduced by Peugeot Sport for its latest racing car. The system comprises high-pressure pumps, a fuel rail shared by all cylinders (i.e. a common rail), piezo in-line injectors, and the central control unit which compiles and processes all relevant sensor data.

Turbocharger

  A turbocharger is actually a type of supercharger. Originally, the turbocharger was called a "turbo super charger." Obviously, the name was shortened out of convenience. A turbocharger’s purpose is to compress the oxygen entering a car’s engine, increasing the amount of oxygen that enters and thereby increasing the power output. Unlike the belt-driven supercharger that is normally thought of when one hears the word "supercharger," the turbocharger is powered by the car’s own exhaust gases. In other words, a turbocharger takes a by-product of the engine that would otherwise be useless, and uses it to increase the car’s horsepower. Cars without a turbocharger or supercharger are called normally aspirated . Normally aspirated cars draw air into the engine through an air filter; the air then passes through a meter, which monitors and regulates the amount of air that enters the system. The air is then delivered to the engine’s comb...

Different types of Casting Process

1) Investment casting 2) Permanent mold casting 3) Centrifugal casting 4) Continuous casting 5) Sand casting Investment casting Investment casting (known as lost-wax casting in art) is a process that has been practiced for thousands of years, with lost wax process being one of the oldest known metal forming techniques. From 5000 years ago, when bees wax formed the pattern, to today’s high technology waxes, refractory materials and specialist alloys, the castings ensure high quality components are produced with the key benefits of accuracy, repeatability, versatility and integrity. Investment casting derives its name from the fact that the pattern is invested, or surrounded, with a refractory material. The wax patterns require extreme care for they are not strong enough to withstand forces encountered during the mold making. One advantage of investment casting it that the wax can be reused. The process is suitable for repeatable ...