Skip to main content

Methods of Compacting / Powder Metallurgy

Methods are:
    1. Pressing
    2. Centrifugal Casting
    3. Slip Casting
    4. Extruding
    5. Gravity Casting
    6. Rolling
    7. Iso-static Moulding
    8. Explosive Compacting
    9. Fibre Metal processes
Pressing:
The function principles of the mechanic press machines differ in how to ensure the upper punch main movement by cams, spindles and friction drives, eccentric, knuckle-joints or by the round table principle, independent if the die or lower punch movement is realized by cams  or eccentric systems or other mechanically or hydraulically combined systems. The executions of auxiliary movements are also not decisive for a term-classification. These auxiliary movements can also base on pneumatic and hydraulic principles. In comparison to hydraulic press machines the maximum compaction forces of mechanical powder presses are limited and are placed in the range </= 5000 kN. For the requirements of wet and dry pressing techniques in the field of Technical Ceramics cams, eccentric, knuckle joint as well as round table presses have proved and tested, whereas cam presses especially used for wet-press-techniques of pourable materials. The range of compaction force of mechanical presses for products of the Technical Ceramics is < 2500 kN, what is caused from the less density of the ceramic materials. Normally the upper punch, lower punch and die systems of mechanical presses don’t work on base of multi subdivided punches.

01-powder pressing-metallurgy

Centrifugal Casting:
It employed for compacting heavy metal powders such as Tungsten Carbide. The powder is twirled in a mould and packed uniformly with pressures up to 3 MPa. The uniform density is obtained as a result of centrifugal force, acting on each particle of powder.

06-centrifugal-casting-process 
05-centrifugal-casting-mold-metal-parts

Slip Casting:
Green compact of metal powder may be obtained by slip casting. The slurry, consisting of metal powder is poured in to porous mould. the free liquid in a slurry is absorbed by the mould tearing the solid layer of material on the surface of mould. The mould may be vibrated to increase the density of component. The Components are dried and sintered to provide sufficient strength.

07-slip casting-process-powder metallurgy

Extruding:
It employed to produce the components with high density and excellent mechanical properties.
Both hot and cold extrusion processes are used for compacting special materials. In cold extrusion the powder is mixed with binder and the mixture is often compressed into billet before being extruded. The binder must be removed before or during sintering. In hot extrusion the powder is compacted in to billet and is then heated to extruding temperature in non oxidizing atmosphere.

04-extrusion-direct-indirect-rod-pipe-process

Gravity Casting:
It used for making sheets having controlled porosity, the powder is poured on a ceramic tray to form a uniform layer and then sintered up to 48 hrs in Ammonia Gas at high temperature. The sheets are then rolled to desired thickness and to obtain a better surface finish. Porous sheets of stainless steel, made by this process are used for filters.

09-gravity-casting-metal-mould 
10-indirect-gravity-casting-metal-mould

Rolling:
It employed for making continuous strips and rods having controlled porosity with uniform mechanical properties. In this method the metal powder is feed in to two rolls, which compress and interlock the powder particles to form a sheet of sufficient strength. It is then sintered, re-rolled and heat treated if necessary. Metal powders which can be compacted in to strips include Copper, Brass, Bronze, Nickel, Monel and Stainless Steel.

08-cold-rolling-process-plate-sheet-foil

Iso Static Moulding:
It used to obtain the products having uniform density and uniform strength in all directions. metal powder is placed in elastic mould (Deformable Mould) which is subjected to Gas pressure (65 to 650 MPa). After pressing the compact is removed.

02-cold-iso-static-pressing-compacting

Explosive Compacting:
It employed for pressing hard particles. The metal powder are placed in water proof bags which are immersed in water. It contained in a cylinder having wall thickness. Due to sudden deformation of change at the end of cylinder the pressure in the cylinder increases. The pressure used to press the metal powders to form green compact.

11-explosive-moulding-compacting

Fibre Metal Processes:
In this process, the metal fibers (Fine wires of Convenient length) are mixed with a liquid slurry and poured over a porous bottom. The liquid is drawed off leaving the green mat of fibre. The mat in which the fibers are randomly distributed is pressed and sintered. The products are mainly used for Filters, Battery Plates and Damping’s.

12-fibre-metal-processes

Comments

Popular posts from this blog

Common Rail Type Fuel Injection System

  Electronic control common rail type fuel injection system drives an integrated fuel pump at an ultrahigh pressure to distribute fuel to each injector per cylinder through a common rail.   This enables optimum combustion to generate big horsepower, and reduce PM* (diesel plume) and fuel consumption. Bosch will supply the complete common-rail injection system for the high-performance 12-cylinder engine introduced by Peugeot Sport for its latest racing car. The system comprises high-pressure pumps, a fuel rail shared by all cylinders (i.e. a common rail), piezo in-line injectors, and the central control unit which compiles and processes all relevant sensor data.

Turbocharger

  A turbocharger is actually a type of supercharger. Originally, the turbocharger was called a "turbo super charger." Obviously, the name was shortened out of convenience. A turbocharger’s purpose is to compress the oxygen entering a car’s engine, increasing the amount of oxygen that enters and thereby increasing the power output. Unlike the belt-driven supercharger that is normally thought of when one hears the word "supercharger," the turbocharger is powered by the car’s own exhaust gases. In other words, a turbocharger takes a by-product of the engine that would otherwise be useless, and uses it to increase the car’s horsepower. Cars without a turbocharger or supercharger are called normally aspirated . Normally aspirated cars draw air into the engine through an air filter; the air then passes through a meter, which monitors and regulates the amount of air that enters the system. The air is then delivered to the engine’s comb...

Different types of Casting Process

1) Investment casting 2) Permanent mold casting 3) Centrifugal casting 4) Continuous casting 5) Sand casting Investment casting Investment casting (known as lost-wax casting in art) is a process that has been practiced for thousands of years, with lost wax process being one of the oldest known metal forming techniques. From 5000 years ago, when bees wax formed the pattern, to today’s high technology waxes, refractory materials and specialist alloys, the castings ensure high quality components are produced with the key benefits of accuracy, repeatability, versatility and integrity. Investment casting derives its name from the fact that the pattern is invested, or surrounded, with a refractory material. The wax patterns require extreme care for they are not strong enough to withstand forces encountered during the mold making. One advantage of investment casting it that the wax can be reused. The process is suitable for repeatable ...